Advertisements
Advertisements
प्रश्न
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
बेरीज
उत्तर
\[\int \frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}}dx\]
\[\text{Let} \sin^{- 1} x^2 = t\]
\[ \Rightarrow \frac{1 \times 2x}{\sqrt{1 - x^4}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{x dx}{\sqrt{1 - x^4}} = \frac{dt}{2}\]
\[Now, \int \frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}}dx\]
\[ = \frac{1}{2}\ ∫ tdt\]
\[ = \frac{t^2}{4} + C\]
\[ = \frac{\left( \sin^{- 1} x^2 \right)^2}{4} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int \cos^7 x \text{ dx } \]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int x \cos^2 x\ dx\]
\[\int2 x^3 e^{x^2} dx\]
\[\int\cos\sqrt{x}\ dx\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int \sec^4 x\ dx\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]