मराठी

∫ 1 5 − 4 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
बेरीज

उत्तर

\[\text{  Let I }= \int \frac{1}{5 - 4 \sin x}dx\]
\[\text{ Putting }\ \sin x = \frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}\]
\[ \Rightarrow I = \int \frac{1}{5 - 4 \times \frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5\left( 1 + \tan^2 \frac{x}{2} \right) - 8 \tan \frac{x}{2}}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{5 \tan^2 \left( \frac{x}{2} \right) - 8 \tan \left( \frac{x}{2} \right) + 5}dx\]
\[\text{ Let   tan} \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2 \int \frac{dt}{5 t^2 - 8t + 5}\]
\[ = \frac{2}{5}\int \frac{dt}{t^2 - \frac{8}{5}t + 1}\]
\[ = \frac{2}{5}\int \frac{dt}{t^2 - \frac{8}{5}t + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}\]
\[ = \frac{2}{5} \int \frac{dt}{\left( t - \frac{4}{5} \right)^2 - \frac{16}{25} + 1}\]
\[ = \frac{2}{5} \int \frac{dt}{\left( t - \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}\]
\[ = \frac{2}{5} \times \frac{5}{3} \text{ tan}^{- 1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t - 4}{3} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5 \tan \left( \frac{x}{2} \right) - 4}{3} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 2 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^5 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int \sec^6 x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×