मराठी

∫ ( 2 X + 5 ) √ 10 − 4 X − 3 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
बेरीज

उत्तर

\[I = \int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\]
\[\text{ Let } \left( 2x + 5 \right) = A\frac{d}{dx}\left( 10 - 4x - 3 x^2 \right) + B\]
\[ \Rightarrow \left( 2x + 5 \right) = A\left( - 4 - 6x \right) + B\]
\[ \Rightarrow \left( 2x + 5 \right) = - 6Ax + \left( B - 4A \right)\]
\[ \Rightarrow 2 = - 6A\text{  and } \left( B - 4A \right) = 5\]
\[ \Rightarrow A = - \frac{1}{3} \text{ and B }= \frac{11}{3}\]

\[\Rightarrow \left( 2x + 5 \right) = - \frac{1}{3}\left( - 4 - 6x \right) + \frac{11}{3}\]
\[ \Rightarrow I = - \frac{1}{3}\int\left( - 4 - 6x \right)\sqrt{10 - 4x - 3 x^2}dx + \frac{11}{3}\int\sqrt{10 - 4x - 3 x^2}dx\]
\[\text{ Let I }= - \frac{1}{3} I_1 + \frac{11}{3} I_2 . . . \left( i \right)\]
\[\text{ Now,} \]
\[ I_1 = \int\left( - 4 - 6x \right)\sqrt{10 - 4x - 3 x^2}dx\]
\[\text{ Let }\left( 10 - 4x - 3 x^2 \right) = t, or, \left( - 4 - 6x \right)dx = dt\]
\[ \Rightarrow I_1 = \int\sqrt{t}dt\]
\[ = \frac{2}{3} t^\frac{3}{2} + c_1 \]
\[ \Rightarrow I_1 = \frac{2}{3} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + c_1\]

\[I_2 = \int\sqrt{\left( 10 - 4x - 3 x^2 \right)}dx\]
\[ = \int\sqrt{3\left( \frac{10}{3} - \frac{4}{3}x - x^2 \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\left( \frac{26}{9} - \frac{4}{9} - \frac{4}{3}x - x^2 \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\left[ \left( \frac{\sqrt{26}}{3} \right)^2 - \left( \frac{4}{9} + \frac{4}{3}x + x^2 \right) \right]}dx\]
\[ = \sqrt{3}\int\sqrt{\left[ \left( \frac{\sqrt{26}}{3} \right)^2 - \left( x + \frac{2}{3} \right)^2 \right]}dx\]
\[ = \sqrt{3}\sin\left( \frac{x + \frac{2}{3}}{\frac{\sqrt{26}}{3}} \right) + c_2 \]
\[ = \sqrt{3}\sin\left( \frac{3x + 2}{\sqrt{26}} \right) + c_2\]

Using (i), we get

\[I = - \frac{1}{3} \times \frac{2}{3} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + \frac{11}{3} \times \sqrt{3}\sin\left( \frac{3x + 2}{\sqrt{26}} \right) + C\]
\[ \therefore I = - \frac{2}{9} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + \frac{11\sqrt{3}}{3}\sin\left( \frac{3x + 2}{\sqrt{26}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 14 | पृष्ठ १५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×