मराठी

∫ Cos 7 X Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos^7 x}{\sin x} dx\]
बेरीज

उत्तर

\[\text{ Let I } = \int\frac{\cos^7 x}{\sin x}dx\]
\[ = \int\frac{\cos^6 x \cdot \cos x dx}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[\text{ Let sin x} = t\]
\[ \Rightarrow \text{ cos  x  dx } = dt\]
\[ \therefore I = \int\frac{\left( 1 - t^2 \right)^3}{t}dt\]
\[ = \int\left( \frac{1 - t^6 - 3 t^2 + 3 t^4}{t} \right)\text{ dt }\]
\[ = \int\left( \frac{1}{t} - t^5 - 3t + 3 t^3 \right)\text{ dt}\]
\[ = \text{ ln }\left| t \right| - \frac{t^6}{6} - \frac{3 t^2}{2} + \frac{3 t^4}{4} + C\]
\[ = \text{ ln }\left| \sin x \right| - \frac{\sin^6 x}{6} - \frac{3 \sin^2 x}{2} + \frac{3}{4} \sin^4 x + C ...............\left( \because t = \sin x \right)\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 19 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \sin^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×