मराठी

∫ Sin − 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \sqrt{x}\ dx\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int \sin^{- 1} \sqrt{x} dx\]

\[\text{ Putting } \sqrt{x} = \sin \theta\]

\[ \Rightarrow x = \sin^2 \theta\]

\[ \Rightarrow dx = 2 \sin \theta \text{ cos } \text{ θ   dθ }\]

\[ \Rightarrow dx = \text{ sin}\left( 2\theta \right)d\theta\]

\[ \therefore I = \int \theta \text{ sin } \left( 2\theta \right)d\theta\]

\[ = \theta\left[ \frac{- \text{ cos }2\theta}{2} \right] - \int1\left( \frac{- \text{ cos }2\theta}{2} \right)d\theta\]

\[ = - \frac{\theta \text{ cos }\left( 2\theta \right)}{2} + \frac{1}{2}\int\text{ cos }\left( 2\theta \right)d\theta\]

\[ = - \frac{\theta \text{ cos} \left( 2\theta \right)}{2} + \frac{1}{2}\left[ \frac{\text{ sin} \left( 2\theta \right)}{2} \right] + C\]

\[ = \frac{- \sin^{- 1} \sqrt{x} \left( 1 - 2 \text{ sin}^2 \theta \right)}{2} + \frac{1}{2}\left[ \frac{2 \sin \theta \cos \theta}{2} \right] + C\]

\[ = \frac{- \sin \sqrt{x}\left( 1 - 2x \right)}{2} + \frac{\sin \theta\sqrt{1 - \sin^2 \theta}}{2} + C\]

\[ = \frac{- \sin^{- 1} \sqrt{x} \left( 1 - 2x \right)}{2} + \frac{\sqrt{x} \sqrt{1 - x}}{2} + C\]

\[ = - \frac{1}{2} \sin^{- 1} \left( \sqrt{x} \right) \left( 1 - 2x \right) + \frac{1}{2}\sqrt{x - x^2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 110 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x \cos^2 x\ dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×