मराठी

∫ { Tan ( Log X ) + Sec 2 ( Log X ) } D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
बेरीज

उत्तर

\[\text{ Let I } = \int\left[ \tan\left( \log x \right) + \sec^2 \left( \log x \right) \right]dx\]

\[\text{ Put  log x = t }\]

\[ \Rightarrow x = e^t \]

\[ \Rightarrow dx = e^t dt\]

\[ \text{ ∴  I }= \int\left( \tan t + \sec^2 t \right) e^t dt\]

\[\text{ Here,} f(t) = \tan t\]

\[ \Rightarrow f'(t) = \sec^2 t\]

` \text{ let e}^t \tan(t) = p  `

\[\text{ Diff  both   sides  w . r . t t }\]

\[ e^t \left[ \tan t + \sec^2 t \right] = \frac{dp}{dt}\]

\[ \Rightarrow e^t \left[ \tan t + \sec^2 t \right]dt = dp\]

\[ ∴  I = \int dp\]

\[ = p + C\]

\[ = e^t \tan t + C\]

\[ = x \text{ tan (log x) }+ C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 22 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×