English

∫ { Tan ( Log X ) + Sec 2 ( Log X ) } D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
Sum

Solution

\[\text{ Let I } = \int\left[ \tan\left( \log x \right) + \sec^2 \left( \log x \right) \right]dx\]

\[\text{ Put  log x = t }\]

\[ \Rightarrow x = e^t \]

\[ \Rightarrow dx = e^t dt\]

\[ \text{ ∴  I }= \int\left( \tan t + \sec^2 t \right) e^t dt\]

\[\text{ Here,} f(t) = \tan t\]

\[ \Rightarrow f'(t) = \sec^2 t\]

` \text{ let e}^t \tan(t) = p  `

\[\text{ Diff  both   sides  w . r . t t }\]

\[ e^t \left[ \tan t + \sec^2 t \right] = \frac{dp}{dt}\]

\[ \Rightarrow e^t \left[ \tan t + \sec^2 t \right]dt = dp\]

\[ ∴  I = \int dp\]

\[ = p + C\]

\[ = e^t \tan t + C\]

\[ = x \text{ tan (log x) }+ C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 22 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int {cosec}^3 x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \tan^3 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int \log_{10} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×