English

∫ X ( X 2 + 2 X + 2 ) √ X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int \frac{x \text{ dx}}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}}\]
\[ = \int \frac{x \text{ dx}}{\left[ \left( x + 1 \right)^2 + 1 \right] \sqrt{x + 1}}\]
\[\text{ Putting  x }+ 1 = t^2 \]
\[ \Rightarrow x = t^2 - 1\]
\[\text{ Diff both  sides}\]
\[dx = 2t \text{ dt}\]
\[ \therefore I = \int \frac{\left( t^2 - 1 \right)2t dt}{\left[ \left( t^2 \right)^2 + 1 \right] t}\]
\[ = 2\int \frac{\left( t^2 - 1 \right)dt}{t^4 + 1}\]
\[\text{Dividing numerator and denominator by} \text{ t}^2 \]
\[I = 2\left( \frac{1 - \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt\]

\[= 2\int\frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} + 2 - 2}\]
\[ = 2\int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{\left( t + \frac{1}{t} \right)^2 - \left( \sqrt{2} \right)^2}\]
\[\text{ Putting  t }+ \frac{1}{t} = p\]
\[ \Rightarrow \left( 1 - \frac{1}{t^2} \right)dt = dp\]
\[I = 2\int \frac{dp}{p^2 - \left( \sqrt{2} \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{p - \sqrt{2}}{p + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log }\left| \frac{p - \sqrt{2}}{P + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log} \left| \frac{t + \frac{1}{t} - \sqrt{2}}{t + \frac{1}{t} + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log} \left| \frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log }\left| \frac{x + 1 - \sqrt{2\left( x + 1 \right)} + 1}{x + 1 + \sqrt{2\left( x + 1 \right)} + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ log} \left| \frac{\left( x + 2 \right) - \sqrt{2\left( x + 1 \right)}}{\left( x + 2 \right) + \sqrt{2\left( x + 1 \right)}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 196]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 7 | Page 196

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×