Advertisements
Advertisements
Question
Solution
\[\int\frac{dx}{\sqrt{\left( 1 - x^2 \right) \left( 9 + \left( \sin^{- 1} x \right)^2 \right)}}\]
\[\text{ let } \sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}} dx = dt\]
\[Now, \int\frac{dx}{\sqrt{\left( 1 - x^2 \right) \left( 9 + \left( \sin^{- 1} x \right)^2 \right)}} \]
\[ = \int\frac{dt}{\sqrt{9 + t^2}}\]
\[ = \int\frac{dt}{\sqrt{3^2 + t^2}}\]
\[ = \text{ log } \left| t + \sqrt{3^2 + t^2} \right| + C\]
\[ = \text{ log }\left| \sin^{- 1} x + \sqrt{9 + \left( \sin^{- 1} x \right)^2} \right| + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int \tan^2 \left( 2x - 3 \right) dx\]
Integrate the following integrals:
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]