∫(1+x2) cos2x dx
Let I Let I=∫(1+x2)⋅cos2x⋅dx cos 2x dx cos 2x dx =∫ cos 2x dx +∫x2⋅ cos 2x dx where I cos 2x dx =sin2x2+I1 where I1=∫x2 cos 2x dx ...(1) dx I1=∫x2IcosII2x dx cos 2x dx cos 2x dx =x2∫ cos 2x dx −∫{ddx(x2)∫ cos 2x dx }dx=x2⋅sin2x2−∫2x×sin2x2dx dx =x2⋅sin2x2−∫xI⋅sinII2x dx sin 2x dx sin 2x dx=x2⋅sin2x2−[x∫ sin 2x dx −∫{ddx(x)∫ sin 2x dx}dx]=x2⋅sin2x2−[x(−cos2x2)−∫1⋅(−cos2x2)dx]=x2⋅sin2x2+x⋅cos2x2−sin2x4...(2) From and From (1) and (2)∴I=sin2x2+x2sin2x2+xcos2x2−sin2x4+C=(x2+1)sin2x2+xcos2x2−sin2x4+C
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
= ∫cos2x3 sinx dx
∫ em sin-1 x1-x2 dx
x dx ∫x cosec2 x dx
∫sec4x dx