English

∫ Sec 4 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sec^4 x\ dx\]

Sum

Solution

\[\text{ Let I } = \int \sec^4 x\ dx\]
\[ = \int \sec^2 x \cdot \sec^2 x\ dx\]
\[ = \int\left( 1 + \tan^2 x \right) \cdot \sec^2 x\ dx\]
\[\text{ Putting  tan x = t }\]
\[ \Rightarrow \text{ sec}^2 \text{ x  dx = dt}\]
\[ \therefore I = \int\left( 1 + t^2 \right) dt\]
\[ = \int dt + \int t^2 dt\]
\[ = t + \frac{t^3}{3} + C\]
\[ = \tan x + \frac{1}{3} \tan^3 x + C................ \left[ \because t = \tan x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 70 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×