Advertisements
Advertisements
Question
\[\int \left( 3x + 4 \right)^2 dx\]
Sum
Solution
\[\int \left( 3x + 4 \right)^2 dx\]
\[ = \int \left( 9 x^2 + 2 \times 3x \times 4 + 16 \right)dx\]
`= 9 ∫ x^2dx + 24 ∫ x dx + 16 ∫ dx`
\[ = 9\left[ \frac{x^3}{3} \right] + 24\left[ \frac{x^2}{2} \right] + 16x + C\]
\[ = 3 x^3 + 12 x^2 + 16x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
` ∫ sin 4x cos 7x dx `
` ∫ cos 3x cos 4x` dx
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int x \cos^3 x\ dx\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int \cos^3 (3x)\ dx\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .