English

∫ 1 ( 1 + X 2 ) √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int \frac{dx}{\left( 1 + x^2 \right) \sqrt{1 - x^2}}\]
\[\text{ Putting  x }= \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int \frac{- \frac{1}{t^2}dt}{\left( 1 + \frac{1}{t^2} \right) \sqrt{1 - \frac{1}{t^2}}}\]
\[ = \int \frac{- \frac{1}{t^2}dt}{\frac{\left( t^2 + 1 \right)}{t^2} \frac{\sqrt{t^2 - 1}}{t}}\]
\[ = - \int \frac{t dt}{\left( t^2 + 1 \right) \sqrt{t^2 - 1}}\]
\[\text{ Again  Putting t}^2 - 1 = u^2 \]
\[ \Rightarrow 2t \text{ dt} = 2u \text{ du}\]
\[ \Rightarrow t \text{ dt} = u \text{ du }\]
\[ \therefore I = - \int \frac{u \text{ du}}{\left( u^2 + 2 \right)u}\]
\[ = - \int \frac{du}{u^2 + \left( \sqrt{2} \right)^2}\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{u}{\sqrt{2}} \right) + C\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{\sqrt{t^2 - 1}}{\sqrt{2}} \right) + C\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \sqrt{\frac{\frac{1}{x^2} - 1}{2}} \right) + C\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \sqrt{\frac{1 - x^2}{2 x^2}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 196]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 12 | Page 196

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×