Advertisements
Advertisements
Question
Solution
\[\int\sqrt{e^x - 1}dx\]
\[\text{Let e}^x - 1 = t^2 \]
\[ \Rightarrow e^x = t^2 + 1\]
\[ e^x = \text{2t }\frac{dt}{dx}\]
`dx = {2t dt}/{e^x} `
`dx = {2t dt}/{t^2 + 1} `
\[Now, \int\sqrt{e^x - 1}dx\]
` = ∫ { t . 2t dt}/{t^2 + 1} `
` =2 ∫ { t^2 dt}/{t^2 + 1} `
\[ = 2\ ∫ \left( \frac{t^2 + 1 - 1}{t^2 + 1} \right)dt \]
\[ = 2\ ∫ dt - 2\int\frac{dt}{t^2 + 1}\]
\[ = 2t - 2 \tan^{- 1} \left( t \right) + C\]
\[ = 2\sqrt{e^x - 1} - 2 \tan^{- 1} \left( \sqrt{e^x - 1} \right) + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]