Advertisements
Advertisements
Question
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
Sum
Solution
\[\int\frac{e^x dx}{\sqrt{16 - \left( e^x \right)^2}}\]
\[\text{ let } e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[Now, \int\frac{e^x dx}{\sqrt{16 - \left( e^x \right)^2}}\]
\[ = \int\frac{dt}{\sqrt{16 - t^2}}\]
\[ = \int\frac{dt}{\sqrt{4^2 - t^2}}\]
\[ = \sin^{- 1} \left( \frac{t}{4} \right) + C\]
\[ = \sin^{- 1} \left( \frac{e^x}{4} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int x \cos^3 x\ dx\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int \cot^4 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]