English

∫ 1 Sin 2 X + Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int \frac{1}{\sin^2 x + \sin \left( 2x \right)}dx\]
\[ = \int \frac{1}{\sin^2 x + 2 \sin x \cos x}dx\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{\tan^2 x + 2 \tan x}dx\]
\[\text{ Let tan x } = t\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int \frac{dt}{t^2 + 2t}\]
\[ = \int \frac{dt}{t^2 + 2t + 1 - 1}\]
\[ = \int \frac{dt}{\left( t + 1 \right)^2 - \left( - 1 \right)^2}\]
\[ = \frac{1}{2}\text{ ln } \left| \frac{t + 1 - 1}{t + 1 + 1} \right| + C\]
\[ = \frac{1}{2}\text{ ln } \left| \frac{t}{t + 2} \right| + C\]
\[ = \frac{1}{2}\text{ ln } \left| \frac{\tan x}{\tan x + 2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.22 [Page 114]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.22 | Q 10 | Page 114

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×