Advertisements
Advertisements
Question
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
Sum
Solution
` f (x) = \sqrtx + 1/ \sqrtx `.
integrating both sides
\[\int{f}\left( x \right)dx = \int\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)dx\]
\[ = \int\left( x^\frac{1}{2} + x^{- \frac{1}{2}} \right)dx\]
\[ = \left[ \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + \left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{3} x^\frac{3}{2} + 2 x^\frac{1}{2} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{1}{1 - \cos x} dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int x^3 \cos x^4 dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]