Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int\left( \frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \right)dx\]
\[\text{ and let 5 cos x + 6 }= A \left( 2 \ cosx + \sin x + 3 \right) + B\left( - 2 \sin x + \cos x \right) + C . . . . (1) \]
\[ \Rightarrow 5 \cos x + 6 = \left( A - 2B \right) \sin x + \left( 2A + B \right) \cos x + 3A + C\]
Comparing coefficients of like terms
\[A - 2B = 0 . . . \left( 2 \right)\]
\[2A + B = 5 . . . (3)\]
\[3A + C = 6 . . . (4)\]
Multiplying eq (3) by 2 and then adding to eq (2)
4A + 2B + A – 2B = 10
Putting value of A in eq (2) and eq (4) we get,
B = 1& C = 0
\[\text{ By putting the values of A, B and C in eq (1) we get ,} \]
\[ \therefore I = \int\left[ \frac{2 \left( 2 \cos x + \sin x + 3 \right) + \left( - 2 \sin x + \cos x \right)}{\left( 2 \cos x + \sin x + 3 \right)} \right]dx\]
\[ = 2\int dx + \int \left( \frac{- 2 \sin x + \cos x}{2 \cos x + \sin x + 3} \right)dx\]
\[\text{ Putting 2 cos x + sin x + 3 = t }\]
\[ \Rightarrow \left( - 2 \sin x + \cos x \right)dx = dt\]
\[ \therefore I = 2\int dx + \int\frac{1}{t}dt\]
\[ = 2x + \text{ ln }\left| 2 \cos x + \sin x + 3 \right| + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
`∫ cos ^4 2x dx `
` ∫ tan^5 x dx `
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]