English

∫ 5 Cos X + 6 2 Cos X + Sin X + 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\left( \frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \right)dx\]
\[\text{ and  let 5 cos x + 6 }= A \left( 2 \ cosx + \sin x + 3 \right) + B\left( - 2 \sin x + \cos x \right) + C . . . . (1) \]
\[ \Rightarrow 5 \cos x + 6 = \left( A - 2B \right) \sin x + \left( 2A + B \right) \cos x + 3A + C\]

Comparing coefficients of like terms

\[A - 2B = 0 . . . \left( 2 \right)\]
\[2A + B = 5 . . . (3)\]
\[3A + C = 6 . . . (4)\]

Multiplying eq (3) by 2 and then adding to eq (2)

4A + 2B + A – 2B = 10

\[\Rightarrow\]A = 2

Putting value of A in eq (2) and eq (4) we get,
B = 1& C = 0

\[\text{ By putting the values of A, B and C in eq (1) we get ,} \]
\[ \therefore I = \int\left[ \frac{2 \left( 2 \cos x + \sin x + 3 \right) + \left( - 2 \sin x + \cos x \right)}{\left( 2 \cos x + \sin x + 3 \right)} \right]dx\]
\[ = 2\int dx + \int \left( \frac{- 2 \sin x + \cos x}{2 \cos x + \sin x + 3} \right)dx\]
\[\text{ Putting 2 cos x + sin x + 3 = t }\]
\[ \Rightarrow \left( - 2 \sin x + \cos x \right)dx = dt\]
\[ \therefore I = 2\int dx + \int\frac{1}{t}dt\]
\[ = 2x + \text{ ln }\left| 2 \cos x + \sin x + 3 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 5 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

`∫     cos ^4  2x   dx `


\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫      tan^5    x   dx `


\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×