English

∫ E M Tan − 1 X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
Sum

Solution

\[\int\left( \frac{e^{m \tan^{- 1} x}}{1 + x^2} \right)dx\]
\[\text{Let} \tan^{- 1} x = t\]
\[ \Rightarrow \left( \frac{1}{1 + x^2} \right)dx = dt\]
\[Now, \int\left( \frac{e^{m \tan^{- 1} x}}{1 + x^2} \right)dx\]
\[ = \int e^{mt} dt\]
\[ = \frac{e^{mt}}{m} + C\]
\[ = \frac{e^{m \tan^{- 1} x}}{m} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 54 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \cot^5 x\ dx\]

\[\int \sec^4 x\ dx\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×