Advertisements
Advertisements
Question
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
Sum
Solution
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right)\left( 1 - 2x \right)dx\]
\[ = \int\left( 2 - 3x \right) \left( 3 - 6x + 2x - 4 x^2 \right)dx\]
\[ = \int\left( 2 - 3x \right) \left( - 4 x^2 - 4x + 3 \right)dx\]
\[ = \int\left( - 8 x^2 - 8x + 6 + 12 x^3 + 12 x^2 - 9x \right)dx\]
\[ = \int\left( 12 x^3 + 4 x^2 - 17x + 6 \right)dx\]
\[ = \frac{12 x^4}{4} + \frac{4 x^3}{3} - \frac{17 x^2}{2} + 6x + C\]
\[ = 3 x^4 + \frac{4}{3} x^3 - \frac{17}{2} x^2 + 6x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
` ∫ tan x sec^4 x dx `
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int \cot^6 x \text{ dx }\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]