English

∫ Cot 6 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \cot^6 x \text{ dx }\]
Sum

Solution

∫ cot6 x dx
= ∫ cot4 x . (cosec2 – 1) dx
= ∫ cot4 x × cosec2 x dx – ​∫ cot4 x dx 

= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cot2 x dx
= ∫ cot4 x – cosec2 x dx – ​∫ (cosec2 x – 1) cot2 x dx
= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx + ​∫ cot2 x dx

= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx + ​∫ (cosec2 x – 1) dx
Now, let I1= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx
And I2= ∫ (cosec2 x – 1) dx

First we integrate I1
I1= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx
Let cot x = t

⇒ –cosec2 x dx = dt
⇒ cosec2 dx = – dt
I1=– ∫ ​t4 dt + ​∫ t2 dt

\[= \frac{- t^5}{5} + \frac{t^3}{3} + C_1 \]
\[ = - \frac{\cot^5 x}{5} + \frac{\cot^3 x}{3} + C_1\]

Now we integrate I2
I2= ∫ (cosec2 x – 1) dx
   = – cot x – x + C1
Now, ∫ cot6 x dx=I1 + I2

\[- \frac{1}{5} \cot^5 x + \frac{1}{3} \cot^3 x - \cot x - x + C_1 + C_2\]
\[- \frac{1}{5} \cot^5 x + \frac{1}{3} \cot^3 x - \cot x - x + C \left[ \therefore C = C_1 + C_2 \right]\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.11 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.11 | Q 12 | Page 69

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×