Advertisements
Advertisements
Question
Solution
∫ cot6 x dx
= ∫ cot4 x . (cosec2 x – 1) dx
= ∫ cot4 x × cosec2 x dx – ∫ cot4 x dx
= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cot2 x dx
= ∫ cot4 x – cosec2 x dx – ∫ (cosec2 x – 1) cot2 x dx
= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx + ∫ cot2 x dx
= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx + ∫ (cosec2 x – 1) dx
Now, let I1= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx
And I2= ∫ (cosec2 x – 1) dx
First we integrate I1
I1= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx
Let cot x = t
⇒ –cosec2 x dx = dt
⇒ cosec2 dx = – dt
I1=– ∫ t4 dt + ∫ t2 dt
\[= \frac{- t^5}{5} + \frac{t^3}{3} + C_1 \]
\[ = - \frac{\cot^5 x}{5} + \frac{\cot^3 x}{3} + C_1\]
Now we integrate I2
I2= ∫ (cosec2 x – 1) dx
= – cot x – x + C1
Now, ∫ cot6 x dx=I1 + I2
APPEARS IN
RELATED QUESTIONS
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]