English

If ∫ 1 5 + 4 Sin X D X = a Tan − 1 ( B Tan X 2 + 4 3 ) + C , Then (A) a = 2 3 , B = 5 3 (B) a = 1 3 , B = 2 3 (C) a = − 2 3 , B = 5 3 (D) a = 1 3 , B = − 5 3 - Mathematics

Advertisements
Advertisements

Question

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then

Options

  •  A =\[\frac{2}{3}\], B =\[\frac{5}{3}\]

  •  A =\[\frac{1}{3}\], B = \[\frac{2}{3}\]

  •  A =\[- \frac{2}{3}\], B =\[\frac{5}{3}\]

  • A =\[\frac{1}{3}\], B =\[- \frac{5}{3}\]

MCQ

Solution

A =\[\frac{2}{3}\] , B =\[\frac{5}{3}\]

\[\int\frac{1}{5 + 4 \sin x}dx =\text{ A  }\tan^{- 1} \left( \text{ B} \tan \frac{x}{2} + \frac{4}{3} \right) + C . . . . (1)\]
\[\text{Considering the LHS of eq} \text{ (1)}\]
\[\text{ Putting  sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow \int\frac{1}{5 + \frac{8 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ \Rightarrow \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) + 8 \tan \frac{x}{2}}\text{ dx }\]
\[ \Rightarrow \int\frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} + 8 \tan \frac{x}{2} + 5}\text{  dx }. . . (2) \]
\[\text{ Let tan }\frac{x}{2} = t\]
\[ \Rightarrow \sec^2 \frac{x}{2} \times \frac{1}{2} \text{ dx }= dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)\text{  dx }= 2dt\]
\[ \therefore \text{ Putting  tan} \frac{x}{2} = \text{ t  and }\sec^2 \left( \frac{x}{2} \right) dx = \text{ 2dt we get, }\]
\[\int\frac{2dt}{5 t^2 + 8t + 5}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{t^2 + \frac{8}{5}t + 1}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{t^2 + \frac{8}{5}t + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{\left( t + \frac{4}{5} \right)^2 + 1 - \frac{16}{25}}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{\left( t + \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}\]
\[ \Rightarrow \frac{2}{5} \times \frac{5}{3} \tan^{- 1} \left( \frac{t + \frac{4}{5}}{\frac{3}{5}} \right) + C\]
\[ \Rightarrow \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t + 4}{3} \right) + C\]
\[ \Rightarrow \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5}{3} \tan \frac{x}{2} + \frac{4}{3} \right) + C \left( \because t = \text{ tan} \frac{x}{2} \right) . . . (3)\]

\[\text{ Comparing eq (3) with the RHS of eq (1) we get ,} \]
\[ \therefore A = \frac{2}{3}, B = \frac{5}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 200]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 4 | Page 200

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×