Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\frac{dx}{x \sqrt{1 + x^n}}\]
\[ = \int\frac{x^{n - 1} dx}{x^{n - 1}\text{ x}^1 \sqrt{1 + x^n}}\]
\[ = \int\frac{x^{n - 1} dx}{x^n \sqrt{1 + x^n}}\]
\[\text{Putting x}^n = t\]
\[ \Rightarrow \text{ n x}^{n - 1} dx = dt\]
\[ \Rightarrow x^{n - 1} \text{ dx} = \frac{dt}{n}\]
\[ \therefore I = \frac{1}{n}\int\frac{dt}{t \sqrt{1 + t}}\]
\[\text{ let 1 + t = p}^2 \]
\[ \Rightarrow \text{ dt = 2p dp }\]
\[ \therefore I = \frac{1}{n}\int\frac{\text{ 2p dp}}{\left( p^2 - 1 \right) p}\]
\[ = \frac{2}{n}\int\frac{dp}{p^2 - 1^2}\]
\[ = \frac{2}{n} \times \frac{1}{2} \text{ log} \left| \frac{p - 1}{p + 1} \right| + C\]
\[ = \frac{1}{n} \text{ log} \left| \frac{\sqrt{1 + t} - 1}{\sqrt{1 + t} + 1} \right| + C\]
\[ = \frac{1}{n} \text{ log } \left| \frac{\sqrt{1 + x^n} - 1}{\sqrt{1 + x^n} + 1} \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]