English

∫ 1 x √ 1 + x n dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{dx}{x \sqrt{1 + x^n}}\]
\[ = \int\frac{x^{n - 1} dx}{x^{n - 1}\text{  x}^1 \sqrt{1 + x^n}}\]
\[ = \int\frac{x^{n - 1} dx}{x^n \sqrt{1 + x^n}}\]
\[\text{Putting  x}^n = t\]
\[ \Rightarrow \text{ n  x}^{n - 1} dx = dt\]
\[ \Rightarrow x^{n - 1} \text{ dx} = \frac{dt}{n}\]
\[ \therefore I = \frac{1}{n}\int\frac{dt}{t \sqrt{1 + t}}\]
\[\text{ let 1 + t = p}^2 \]
\[ \Rightarrow \text{ dt = 2p dp }\]
\[ \therefore I = \frac{1}{n}\int\frac{\text{ 2p dp}}{\left( p^2 - 1 \right) p}\]
\[ = \frac{2}{n}\int\frac{dp}{p^2 - 1^2}\]
\[ = \frac{2}{n} \times \frac{1}{2} \text{ log} \left| \frac{p - 1}{p + 1} \right| + C\]
\[ = \frac{1}{n} \text{ log} \left| \frac{\sqrt{1 + t} - 1}{\sqrt{1 + t} + 1} \right| + C\]
\[ = \frac{1}{n} \text{ log } \left| \frac{\sqrt{1 + x^n} - 1}{\sqrt{1 + x^n} + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 101 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \cos^5 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×