Advertisements
Advertisements
Question
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
Options
- \[\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
- \[\log_e a \cdot a^{x + \frac{1}{x}}\]
- \[\frac{a^{x + \frac{1}{x}}}{x} \log_e a\]
- \[x\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
MCQ
Solution
\[\frac{a^{x + \frac{1}{x}}}{\log_e a}\]
\[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) \cdot a^{x + \frac{1}{x}} \]
\[ \therefore \int f\left( x \right)dx = \int\left( 1 - \frac{1}{x^2} \right) \cdot a^{x + \frac{1}{x}} dx\]
\[\text{Let }\left( x + \frac{1}{x} \right) = t\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dt\]
\[ \therefore \int f\left( x \right)dx = \int a^t \cdot dt\]
\[ = \frac{a^t}{\log_e a} + C\]
\[ = \frac{a^{x + \frac{1}{x}}}{\log_e a} + C ...........\left( \because t = x + \frac{1}{x} \right)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int \cot^5 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int x \sin^3 x\ dx\]
\[\int x \cos^3 x\ dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int \cos^5 x\ dx\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]