Advertisements
Advertisements
Question
Solution
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}}dx\]
\[ = \int\left( \frac{1 + x^3 + 3 \left( 1 \right)^2 x + 3\left( 1 \right) x^2}{\sqrt{x}} \right)dx\]
\[ = \int\left( \frac{1 + x^3 + 3x + 3 x^2}{\sqrt{x}} \right) dx\]
\[ = \int\left( \frac{1}{\sqrt{x}} + \frac{x^3}{\sqrt{x}} + \frac{3x}{\sqrt{x}} + \frac{3 x^2}{\sqrt{x}} \right)dx\]
\[ = \int\left( x^{- \frac{1}{2}} + x^\frac{5}{2} + 3 x^\frac{1}{2} + 3 x^\frac{3}{2} \right)dx\]
\[ = \left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + \frac{x^\frac{5}{2} + 1}{\frac{5}{2} + 1} + 3\frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} + 3\frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + C\]
\[ = 2\sqrt{x} + \frac{2}{7} x^\frac{7}{2} + 2 x^\frac{3}{2} + \frac{6}{5} x^\frac{5}{2} + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` ∫ sin x \sqrt (1-cos 2x) dx `
` ∫ tan^5 x dx `
\[\int \sec^4 x\ dx\]