English

∫ X Sin X Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x \sin x \cos 2x\ dx\]
Sum

Solution

\[\int x . \cos 2x \text{ sin x dx }\]
\[ = \frac{1}{2} \int x \left( 2 \cos 2x \sin x \right) dx \left[ \because 2 \cos A \sin B = \sin \left( A + B \right) - \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2} \int x \left( \sin 3x - \sin x \right) dx\]
\[ = \frac{1}{2} \int x . \text{ sin 3x dx }- \frac{1}{2} \int x \text{ sin x dx}\]
\[ = \frac{1}{2}\left[ x\int\text{ sin 3x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 3x dx} \right\}dx \right] - \frac{1}{2}\left[ x\int\text{ sin x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin x dx }\right\}dx \right]\]
\[ = \frac{1}{2}\left[ x . \left( \frac{- \cos 3x}{3} \right) - \int 1 . \left( \frac{- \cos 3x}{3} \right)dx \right] - \frac{1}{2}\left[ x . \left( - \text{ cos x} \right) - \int 1 . \left( - \cos x \right) dx \right]\]
\[ = \frac{1}{2}\left[ x . \left( \frac{- \cos 3x}{3} \right) + \frac{1}{9}\sin 3x \right] - \frac{1}{2}\left[ x . \left( - \cos x \right) + \sin x \right]\]
\[ = - \frac{x \cos 3x}{6} + \frac{\sin 3x}{18} + \frac{x \cos x}{2} - \frac{\sin x}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 50 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫      tan^5    x   dx `


\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int \left( \sin^{- 1} x \right)^3 dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×