English

∫ ( X − 1 ) 2 X 2 + 2 X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
Sum

Solution

\[\text{ Let } I = \int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[ = \int\left( \frac{x^2 - 2x + 1}{x^2 + 2x + 2} \right) dx\]
\[\text{ Here }, \]



\[\text{ Thereforez }, \]
\[\frac{x^2 - 2x + 1}{x^2 + 2x + 2} = 1 - \frac{\left( 4x + 1 \right)}{x^2 + 2x + 2} . . . . . \left( 1 \right)\]
\[\text{ Let } 4x + 1 = A\frac{d}{dx} \left( x^2 + 2x + 2 \right) + B\]
\[4x + 1 = A \left( 2x + 2 \right) + B\]
\[4x + 1 = \left( 2A \right) x + 2A + B\]
\[  \text{ Equating Coefficients   of  like terms }\]
\[\text{ 2A = 4 }\]
\[A = 2\]
\[2A + B = 1\]
\[2 \times 2 + B = 1\]
\[B = - 3\]
\[\int\left( \frac{x^2 - 2x + 1}{x^2 + 2x + 2} \right) dx\]
\[ = \int dx - 2\int\frac{\left( 2x + 2 \right)}{x^2 + 2x + 2} dx + 3\int\frac{dx}{x^2 + 2x + 2}\]


\[ = \int dx - 2\int\frac{\left( 2x + 2 \right)}{x^2 + 2x + 2} dx + 3\int\frac{dx}{\left( x + 1 \right)^2 + 1^2}\]
\[ = x - 2 \text{ log } \left| x^2 + 2x + 2 \right| + \frac{3}{1} \tan^{- 1} \left( \frac{x + 1}{1} \right) + C\]
\[ = x - 2 \text { log } \left| x^2 + 2x + 2 \right| + 3 \tan^{- 1} \left( x + 1 \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.2 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.2 | Q 7 | Page 106

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int \sec^4 2x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×