English

∫ Sin 2 X a 2 + B 2 Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
Sum

Solution

\[\text{Let I} = \int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}dx\]
\[\text{Putting}\ \sin^2 x = t\]
\[ \Rightarrow 2\sin x . \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \sin 2x = \frac{dt}{dx}\]
\[ \Rightarrow \text{sin 2x dx} = dt\]
\[ \therefore I = \int\frac{1}{a^2 + b^2 t}dt\]
\[ = \frac{1}{b^2} \text{ln }\left| a^2 + b^2 t \right| + C\]
\[ = \frac{1}{b^2} \text{ln }\left| a^2 + b^2 \sin^2 x \right| + C \left[ \because t = \sin^2 x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 38 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

`  ∫  sin 4x cos  7x  dx  `

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \cos^5 x\ dx\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int x \sec^2 2x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×