English

∫ 1 2 + Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int \frac{1}{2 + \sin x + \cos x}dx\]
\[\text{ Putting   sin x} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{2 + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{1 + \tan^2 \frac{x}{2}}{2\left( 1 + \tan^2 \frac{x}{2} \right) + 2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{2 + 2 \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{\tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + 3}dx\]
\[\text{ Let tan }\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{t^2 + 2t + 3}\]
\[ = 2\int \frac{dt}{t^2 + 2t + 1 + 2}\]
\[ = 2\int \frac{dt}{\left( t + 1 \right)^2 + \left( \sqrt{2} \right)^2}\]
\[ = 2 \times \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t + 1}{\sqrt{2}} \right) + C \]
\[ = \sqrt{2} \tan^{- 1} \left( \frac{\tan \frac{x}{2} + 1}{\sqrt{2}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 11 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×