English

∫ Sin 5 X Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^5 x \cos x \text{ dx }\]
Sum

Solution

∫ sin5 x cos x dx
Let sin x = t
cos x dx = dt

Now, ∫ sin5 x cos x dx
​= ∫ t5 . dt

\[= \frac{t^6}{6} + C\]
\[ = \frac{\sin^6 x}{6} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.12 [Page 73]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.12 | Q 4 | Page 73

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int \cot^4 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×