English

∫ Cos X − Sin X 1 + Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
Sum

Solution

\[\int\left( \frac{\cos x - \sin x}{1 + \sin \left( 2x \right)} \right)dx\]
\[ \Rightarrow \int\left( \frac{\cos x - \sin x}{\cos^2 x + \sin^2 x + 2 \sin x . \cos x} \right)dx\]
\[ \Rightarrow \int\frac{\left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)^2}dx\]
\[Let \cos x + \sin x = t\]
\[ \Rightarrow \left( - \sin x + \cos x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( - \sin x + \cos x \right) dx = dt\]
\[Now, \int\frac{\left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)^2}dx\]
\[ = \int\frac{dt}{t^2}\]
\[ = \int t^{- 2} dt\]
\[ = \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{- 1}{t} + C\]
\[ = - \frac{1}{\sin x + \cos x} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 26 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \cot^5 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×