English

∫ 1 7 + 5 Cos X D X = - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{7 + 5 \cos x} dx =\]

Options

  • \[\frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{1}{\sqrt{6}}\tan\frac{x}{2} \right) + C\]
  • \[\frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}}\tan\frac{x}{2} \right) + C\]

  • \[\frac{1}{4} \tan^{- 1} \left( \tan\frac{x}{2} \right) + C\]
  • \[\frac{1}{7} \tan^{- 1} \left( \tan\frac{x}{2} \right) + C\]
MCQ

Solution

\[\frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{1}{\sqrt{6}}\tan\frac{x}{2} \right) + C\]
 
 
\[\text{Let }I = \int\frac{dx}{7 + 5 \cos x}\]

\[\text{Putting }\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{dx}{7 + 5 \times \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right) dx}{7\left( 1 + \tan^2 \frac{x}{2} \right) + 5 - 5 \tan^2 \frac{x}{2}}\]
\[ = \int\frac{\sec^2 \frac{x}{2} dx}{2 \tan^2 \frac{x}{2} + 12}\]
\[ = \frac{1}{2}\int\frac{\sec^2 \frac{x}{2}dx}{\tan^2 \frac{x}{2} + \left( \sqrt{6} \right)^2}\]
\[\text{Let }\tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2 dt\]
\[ \therefore I = \frac{1}{2}\int\frac{2 dt}{t^2 + \left( \sqrt{6} \right)^2}\]
\[ = \frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{t}{\sqrt{6}} \right) + C ................\left( \because \int\frac{1}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
\[ = \frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{\tan \frac{x}{2}}{\sqrt{6}} \right) + C .............\left( \because t = \tan \frac{x}{2} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 201]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 16 | Page 201

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \sin^5 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×