English

∫ 1 1 − Cos X − Sin X D X = - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

Options

  • \[\log\left| 1 + \cot\frac{x}{2} \right| + C\]
  • \[\log\left| 1 - \tan\frac{x}{2} \right| + C\]
  • \[\log\left| 1 - \cot\frac{x}{2} \right| + C\]
  • \[\log\left| 1 + \tan\frac{x}{2} \right| + C\]
MCQ

Solution

\[\log\left| 1 - \cot\frac{x}{2} \right| + C\]
 
 
\[\text{Let }I = \int\frac{dx}{1 - \cos x - \sin x}\]

\[ = \int\frac{dx}{1 - \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) - \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}\]

\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right) dx}{\left( 1 + \tan^2 \frac{x}{2} \right) - \left( 1 - \tan^2 \frac{x}{2} \right) - 2 \tan \frac{x}{2}}\]

\[ = \int\frac{\sec^2 \frac{x}{2} dx}{2 \tan^2 \frac{x}{2} - 2 \tan \frac{x}{2}}\]

\[ = \frac{1}{2}\int\frac{\sec^2 \frac{x}{2} dx}{\tan^2 \frac{x}{2} - \tan \frac{x}{2}}\]
\[\text{Putting }\tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2dt\]
\[ \therefore I = \frac{1}{2}\int\frac{2dt}{t^2 - t}\]
\[ = \int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \int\frac{dt}{\left( t - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2 \times \frac{1}{2}} \ln \left| \frac{t - \frac{1}{2} - \frac{1}{2}}{t - \frac{1}{2} + \frac{1}{2}} \right| + C ............\left( \because \int\frac{dx}{x^2 - a^2} = \frac{1}{2a}\ln\left| \frac{x - a}{x + a} \right| + C \right)\]
\[ = \ln \left| \frac{t - 1}{t} \right| + C\]
\[ = \ln \left| 1 - \frac{1}{t} \right| + C\]
\[ = \ln \left| 1 - \frac{1}{\tan \frac{x}{2}} \right| + C ..........\left( \because t = \tan \frac{x}{2} \right)\]
\[ = \ln \left| 1 - \cot \frac{x}{2} \right| + C\]

shaalaa.com

Notes

Here in answer \[\log\left| 1 - \cot\frac{x}{2} \right| + C\] refers to \[\log_e \left| 1 - \cot\frac{x}{2} \right| + C\text{ or }\ln \left| 1 - \cot\frac{x}{2} \right| + C\]

  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 201]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 17 | Page 201

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×