Advertisements
Advertisements
Question
Options
- \[\log\left| 1 + \cot\frac{x}{2} \right| + C\]
- \[\log\left| 1 - \tan\frac{x}{2} \right| + C\]
- \[\log\left| 1 - \cot\frac{x}{2} \right| + C\]
- \[\log\left| 1 + \tan\frac{x}{2} \right| + C\]
Solution
\[ = \int\frac{dx}{1 - \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) - \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right) dx}{\left( 1 + \tan^2 \frac{x}{2} \right) - \left( 1 - \tan^2 \frac{x}{2} \right) - 2 \tan \frac{x}{2}}\]
\[ = \int\frac{\sec^2 \frac{x}{2} dx}{2 \tan^2 \frac{x}{2} - 2 \tan \frac{x}{2}}\]
\[ = \frac{1}{2}\int\frac{\sec^2 \frac{x}{2} dx}{\tan^2 \frac{x}{2} - \tan \frac{x}{2}}\]
\[\text{Putting }\tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2dt\]
\[ \therefore I = \frac{1}{2}\int\frac{2dt}{t^2 - t}\]
\[ = \int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \int\frac{dt}{\left( t - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2 \times \frac{1}{2}} \ln \left| \frac{t - \frac{1}{2} - \frac{1}{2}}{t - \frac{1}{2} + \frac{1}{2}} \right| + C ............\left( \because \int\frac{dx}{x^2 - a^2} = \frac{1}{2a}\ln\left| \frac{x - a}{x + a} \right| + C \right)\]
\[ = \ln \left| \frac{t - 1}{t} \right| + C\]
\[ = \ln \left| 1 - \frac{1}{t} \right| + C\]
\[ = \ln \left| 1 - \frac{1}{\tan \frac{x}{2}} \right| + C ..........\left( \because t = \tan \frac{x}{2} \right)\]
\[ = \ln \left| 1 - \cot \frac{x}{2} \right| + C\]
Notes
Here in answer \[\log\left| 1 - \cot\frac{x}{2} \right| + C\] refers to \[\log_e \left| 1 - \cot\frac{x}{2} \right| + C\text{ or }\ln \left| 1 - \cot\frac{x}{2} \right| + C\]
APPEARS IN
RELATED QUESTIONS
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{1}{2 + \cos x} \text{ dx }\]