Advertisements
Advertisements
Question
Solution
\[\int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx\]
\[\frac{x^2 + x - 1}{x^2 + x - 6} = 1 + \frac{5}{x^2 + x - 6}\]
\[ \int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx\]
\[ = ∫ dx + 5\int\frac{dx}{x^2 + x - 6}\]
\[ = ∫ dx + 5\int\frac{dx}{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 6}\]
\[ = ∫ dx + 5\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 - \frac{1}{4} - 6}\]
\[ = ∫ dx + 5\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 - \left( \frac{5}{2} \right)^2}\]
\[ = x + 5 \times \frac{1}{2 \times \frac{5}{2}} \text{ log } \left| \frac{x + \frac{1}{2} - \frac{5}{2}}{x + \frac{1}{2} + \frac{5}{2}} \right| + C\]
\[ = x + \text{ log } \left| \frac{x - 2}{x + 3} \right| + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
Integrate the following integrals:
Write a value of
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .