English

∫ X 5 √ 1 + X 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
Sum

Solution

\[\int\frac{x^5 dx}{\sqrt{1 + x^3}}\]
\[ = \int\frac{x^3 . x^2 dx}{\sqrt{1 + x^3}}\]
\[\text{Let 1} + x^3 = t \]
\[ \Rightarrow x^3 = t - 1\]
\[ \Rightarrow 3 x^2 = \frac{dt}{dx}\]
\[ \Rightarrow \text{x^2 dx} = \frac{dt}{3}\]
` Now,∫  {x^3 . x^2     dx}/{\sqrt{1 + x^3}}`
\[ = \frac{1}{3}\int\frac{\left( t - 1 \right)}{\sqrt{t}} dt\]
\[ = \frac{1}{3}\int\left( \sqrt{t} - \frac{1}{\sqrt{t}} \right)dt\]
\[ = \frac{1}{3} \int\left( t^\frac{1}{2} - t^{- \frac{1}{2}} \right)dt\]
\[ = \frac{1}{3}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} - \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{3}\left[ \frac{2}{3} t^\frac{3}{2} - 2\sqrt{t} \right] + C\]
\[ = \frac{2}{9} \left( 1 + x^3 \right)^\frac{3}{2} - \frac{2}{3} \left( 1 + x^3 \right)^\frac{1}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 68 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫      tan^5    x   dx `


\[\int \cot^6 x \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×