English

Evaluate the Following Integrals: ∫ Cos { 2 Cot − 1 √ 1 + X 1 − X } D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
Sum

Solution

\[\text{Let I }= \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[ \text{Let x} = \cos2\theta\]

\[ \text{On differentiating both sides, we get}\

`dx = - 2 sin2θ      d θ  `

`∴ I = -∫ cos { 2 cot^{- 1} \sqrt{{1 + cos 2θ  }/{1 - \cos2 θ }}}  2 sin2θ   d θ  `

`  = -  2 ∫ cos { 2 cot^{- 1} \sqrt{{2cos ^2θ  }/{2  \sin^2 θ }}}  2 sin^2θ   d θ  `

` - 2      ∫  cos { 2 cot^{- 1} (cot θ )}  sin2θ   d θ  `

` - 2      ∫  cos 2θ   sin2θ   d θ  `

` - 2      ∫     sin4θ   d θ  `

\[ = \frac{\cos4\theta}{4} + c_1 \]

\[ = \frac{1}{4}\left( 2 \cos^2 2\theta - 1 \right) + c_1 \]

\[ = \frac{1}{2} x^2 - \frac{1}{4} + c_1 \]

\[ = \frac{1}{2} x^2 + c, \text{where c} = - \frac{1}{4} + c_1 \]

\[Hence, \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx = \frac{1}{2} x^2 + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.13 [Page 79]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.13 | Q 3 | Page 79

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×