मराठी

Evaluate the Following Integrals: ∫ Cos { 2 Cot − 1 √ 1 + X 1 − X } D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
बेरीज

उत्तर

\[\text{Let I }= \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[ \text{Let x} = \cos2\theta\]

\[ \text{On differentiating both sides, we get}\

`dx = - 2 sin2θ      d θ  `

`∴ I = -∫ cos { 2 cot^{- 1} \sqrt{{1 + cos 2θ  }/{1 - \cos2 θ }}}  2 sin2θ   d θ  `

`  = -  2 ∫ cos { 2 cot^{- 1} \sqrt{{2cos ^2θ  }/{2  \sin^2 θ }}}  2 sin^2θ   d θ  `

` - 2      ∫  cos { 2 cot^{- 1} (cot θ )}  sin2θ   d θ  `

` - 2      ∫  cos 2θ   sin2θ   d θ  `

` - 2      ∫     sin4θ   d θ  `

\[ = \frac{\cos4\theta}{4} + c_1 \]

\[ = \frac{1}{4}\left( 2 \cos^2 2\theta - 1 \right) + c_1 \]

\[ = \frac{1}{2} x^2 - \frac{1}{4} + c_1 \]

\[ = \frac{1}{2} x^2 + c, \text{where c} = - \frac{1}{4} + c_1 \]

\[Hence, \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx = \frac{1}{2} x^2 + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.13 | Q 3 | पृष्ठ ७९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x e^x \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×