Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
उत्तर
\[\text{Let I }= \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[ \text{Let x} = \cos2\theta\]
\[ \text{On differentiating both sides, we get}\
`dx = - 2 sin2θ d θ `
`∴ I = -∫ cos { 2 cot^{- 1} \sqrt{{1 + cos 2θ }/{1 - \cos2 θ }}} 2 sin2θ d θ `
` = - 2 ∫ cos { 2 cot^{- 1} \sqrt{{2cos ^2θ }/{2 \sin^2 θ }}} 2 sin^2θ d θ `
` - 2 ∫ cos { 2 cot^{- 1} (cot θ )} sin2θ d θ `
` - 2 ∫ cos 2θ sin2θ d θ `
` - 2 ∫ sin4θ d θ `
\[ = \frac{\cos4\theta}{4} + c_1 \]
\[ = \frac{1}{4}\left( 2 \cos^2 2\theta - 1 \right) + c_1 \]
\[ = \frac{1}{2} x^2 - \frac{1}{4} + c_1 \]
\[ = \frac{1}{2} x^2 + c, \text{where c} = - \frac{1}{4} + c_1 \]
\[Hence, \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx = \frac{1}{2} x^2 + c\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`