मराठी

∫ Sec X C O S E C X Log ( Tan X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx

बेरीज

उत्तर

` Note: Here ,  we   are "  considering " log x  as   log_e x` .
      Let I = ` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx
`  "Putting"  "log" \ tan x = t `
\[ \Rightarrow \frac{\sec^2 x}{\tan x} = \frac{dt}{dx}\]
\[ \Rightarrow \text{sec x cosec x dx} = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{log }\left| \text{t }\right| + C\]
\[ = \text{log} \left| \text{log} \left( \tan x \right) \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.08 | Q 15 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×