मराठी

∫ 1 X 4 + 3 X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We have}, \]
\[I = \int \frac{dx}{x^4 + 3 x^2 + 1}\]
\[ = \frac{1}{2}\int \frac{2 \text{ dx }}{x^4 + 3 x^2 + 1}\]
\[ = \frac{1}{2}\int\left[ \frac{\left( x^2 + 1 \right) - \left( x^2 - 1 \right)}{x^4 + 3 x^2 + 1} \right]dx\]
\[ = \frac{1}{2}\int\left( \frac{x^2 + 1}{x^4 + 3 x^2 + 1} \right)dx - \frac{1}{2}\int\frac{\left( x^2 - 1 \right)}{x^4 + 3 x^2 + 1}dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[ = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} + 3} \right)dx - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 3}\]
\[ = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} - 2 + 5} \right)dx - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 2 + 1}\]
\[ = \frac{1}{2}\int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{5} \right)^2} - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{\left( x + \frac{1}{x} \right)^2 + 1^2}\]
\[\text{ Putting  x} - \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[\text{ Putting  x} + \frac{1}{x} = p\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dp\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t^2 + \left( \sqrt{5} \right)^2} - \frac{1}{2}\int\frac{dp}{p^2 + 1^2}\]
\[ = \frac{1}{2\sqrt{5}} \tan^{- 1} \left( \frac{t}{\sqrt{5}} \right) - \frac{1}{2} \tan^{- 1} \left( p \right) + C\]
\[ = \frac{1}{2\sqrt{5}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{5}} \right) - \frac{1}{2} \tan^{- 1} \left( x + \frac{1}{x} \right) + C\]
\[ = \frac{1}{2\sqrt{5}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{5}x} \right) - \frac{1}{2} \tan^{- 1} \left( \frac{x^2 + 1}{x} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.31 | Q 10 | पृष्ठ १९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x e^x \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×