Advertisements
Advertisements
प्रश्न
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
बेरीज
उत्तर
\[\int \frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}}dx\]
\[ = \int \left( \frac{1}{\sqrt{x}} + \frac{x}{\sqrt{x}} + 2\frac{\sqrt{x}}{\sqrt{x}} \right)dx\]
\[ = \int\left( x^{- \frac{1}{2}} + x^\frac{1}{2} + 2 \right)dx\]
\[ = \left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \left[ \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + 2x + C\]
\[ = 2\sqrt{x} + \frac{2}{3} x^\frac{3}{2} + 2x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]