मराठी

∫ X 2 + 3 X − 1 ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
बेरीज

उत्तर

\[\text{Let I }= \int \left[ \frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} \right]dx\]

Putting x + 1 = t
⇒ x = t – 1
& dx = dt

\[\therefore I = \int\left[ \frac{\left( t - 1 \right)^2 + 3 \left( t - 1 \right) - 1}{t^2} \right]dt\]
\[ = \int \left( \frac{t^2 - 2t + 1 + 3t - 3 - 1}{t^2} \right)dt\]
\[ = \int\left( \frac{t^2 + t - 3}{t^2} \right)dt\]
\[ = \int\left( 1 + \frac{1}{t} - 3 t^{- 2} \right)dt\]
\[ = t + \text{log} \left| t \right| - 3\left( \frac{t^{- 2 + 1}}{- 2 + 1} \right) + C\]
\[ = t + \text{log}\left| t \right| + \frac{3}{t} + C\]
\[ = x + 1 + \text{log} \left| x + 1 \right| + \frac{3}{x + 1} + C \left[ \because t = x + 1 \right]\]

Let C + 1 = C′

\[= x + \text{log} \left( x + 1 \right) + \frac{3}{x + 1} + C\prime\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.04 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.04 | Q 5 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×