Advertisements
Advertisements
प्रश्न
उत्तर
Putting x + 1 = t
⇒ x = t – 1
& dx = dt
\[\therefore I = \int\left[ \frac{\left( t - 1 \right)^2 + 3 \left( t - 1 \right) - 1}{t^2} \right]dt\]
\[ = \int \left( \frac{t^2 - 2t + 1 + 3t - 3 - 1}{t^2} \right)dt\]
\[ = \int\left( \frac{t^2 + t - 3}{t^2} \right)dt\]
\[ = \int\left( 1 + \frac{1}{t} - 3 t^{- 2} \right)dt\]
\[ = t + \text{log} \left| t \right| - 3\left( \frac{t^{- 2 + 1}}{- 2 + 1} \right) + C\]
\[ = t + \text{log}\left| t \right| + \frac{3}{t} + C\]
\[ = x + 1 + \text{log} \left| x + 1 \right| + \frac{3}{x + 1} + C \left[ \because t = x + 1 \right]\]
Let C + 1 = C′
APPEARS IN
संबंधित प्रश्न
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]