मराठी

∫ E X [ Sec X + Log ( Sec X + Tan X ) ] D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
बेरीज

उत्तर

\[\text{ Let I } = \int e^x \left[ \sec x + \text{ log }\left( \sec x + \tan x \right) \right]dx\]

\[\text{ Here, } f(x) = \text{ log }\left( \sec x + \tan x \right) Put e^x f(x) = t\]

\[ \Rightarrow f'(x) = \sec x \]

\[\text{ let e}^x \text{ log }\left( \sec x + \tan x \right) = t\]

\[\text{ Diff  both  sides  w . r . t x }\]

\[ e^x \text{ log }\left( \sec x + \tan x \right) + e^x \frac{1}{\sec x + \tan x}\left( \sec x + \tan x + \sec^2 x \right) = \frac{dt}{dx}\]

\[ \Rightarrow \left[ e^x \log\left( \sec x + \tan x \right) + e^x \left( \sec x \right) \right]dx = dt\]

\[ \Rightarrow e^x \left[ \sec x + \log\left( \sec x + \tan x \right) \right]dx = dt\]

\[ \therefore \int e^x \left[ \sec x + \text{ log} \left( \text{ sec x} + \tan x \right) \right]dx = \int dt\]

\[ = t + C\]

\[ = e^x \text{ log }|\left( \sec x + \tan x \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 8 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×