Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^x \left[ \sec x + \text{ log }\left( \sec x + \tan x \right) \right]dx\]
\[\text{ Here, } f(x) = \text{ log }\left( \sec x + \tan x \right) Put e^x f(x) = t\]
\[ \Rightarrow f'(x) = \sec x \]
\[\text{ let e}^x \text{ log }\left( \sec x + \tan x \right) = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \text{ log }\left( \sec x + \tan x \right) + e^x \frac{1}{\sec x + \tan x}\left( \sec x + \tan x + \sec^2 x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left[ e^x \log\left( \sec x + \tan x \right) + e^x \left( \sec x \right) \right]dx = dt\]
\[ \Rightarrow e^x \left[ \sec x + \log\left( \sec x + \tan x \right) \right]dx = dt\]
\[ \therefore \int e^x \left[ \sec x + \text{ log} \left( \text{ sec x} + \tan x \right) \right]dx = \int dt\]
\[ = t + C\]
\[ = e^x \text{ log }|\left( \sec x + \tan x \right) + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
Find: `int (3x +5)/(x^2+3x-18)dx.`