मराठी

∫ 1 ( X + 1 ) 2 ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{dx}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}\]

\[\text{Let }\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{Cx + D}{x^2 + 1}\]

\[ \Rightarrow \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A \left( x + 1 \right) \left( x^2 + 1 \right) + B \left( x^2 + 1 \right) + \left( Cx + D \right) \left( x + 1 \right)^2}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}\]

\[ \Rightarrow 1 = A \left( x^3 + x + x^2 + 1 \right) + B \left( x^2 + 1 \right) + \left( Cx + D \right)\left( x^2 + 2x + 1 \right)\]

\[ \Rightarrow 1 = A \left( x^3 + x^2 + x + 1 \right) + B \left( x^2 + 1 \right) + C x^3 + 2C x^2 + Cx + D x^2 + 2Dx + D\]

\[ \Rightarrow 1 = \left( A + C \right) x^3 + \left( A + B + 2C + D \right) x^2 + \left( A + C + 2D \right) x + A + B + D\]

\[\text{Equating coefficients of like terms}\]

\[A + C = 0 . . . . . \left( 1 \right)\]

\[A + B + 2C + D = 0 . . . . . \left( 2 \right)\]

\[A + C + 2D = 0 . . . . . \left( 3 \right)\]

\[A + B + D = 1 . . . . . \left( 4 \right)\]

\[A = \frac{1}{2}, B = \frac{1}{2}, C = - \frac{1}{2}\text{ and }D = 0\]

\[ \therefore \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} + \frac{1}{2 \left( x + 1 \right)^2} - \frac{1}{2} \times \frac{x}{x^2 + 1}\]

\[ \Rightarrow \int\frac{dx}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2} - \frac{1}{2}\int\frac{x dx}{x^2 + 1}\]

\[\text{Putting }x^2 + 1 = t\]

\[ \Rightarrow 2x dx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2} - \frac{1}{4}\int\frac{dt}{t}\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{2 \left( x + 1 \right)} - \frac{1}{4} \log \left| t \right| + C'\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{2 \left( x + 1 \right)} - \frac{1}{4} \log \left| x^2 + 1 \right| + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 39 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int \cos^5 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×