Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\frac{dx}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}\]
\[\text{Let }\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{Cx + D}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A \left( x + 1 \right) \left( x^2 + 1 \right) + B \left( x^2 + 1 \right) + \left( Cx + D \right) \left( x + 1 \right)^2}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A \left( x^3 + x + x^2 + 1 \right) + B \left( x^2 + 1 \right) + \left( Cx + D \right)\left( x^2 + 2x + 1 \right)\]
\[ \Rightarrow 1 = A \left( x^3 + x^2 + x + 1 \right) + B \left( x^2 + 1 \right) + C x^3 + 2C x^2 + Cx + D x^2 + 2Dx + D\]
\[ \Rightarrow 1 = \left( A + C \right) x^3 + \left( A + B + 2C + D \right) x^2 + \left( A + C + 2D \right) x + A + B + D\]
\[\text{Equating coefficients of like terms}\]
\[A + C = 0 . . . . . \left( 1 \right)\]
\[A + B + 2C + D = 0 . . . . . \left( 2 \right)\]
\[A + C + 2D = 0 . . . . . \left( 3 \right)\]
\[A + B + D = 1 . . . . . \left( 4 \right)\]
\[A = \frac{1}{2}, B = \frac{1}{2}, C = - \frac{1}{2}\text{ and }D = 0\]
\[ \therefore \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} + \frac{1}{2 \left( x + 1 \right)^2} - \frac{1}{2} \times \frac{x}{x^2 + 1}\]
\[ \Rightarrow \int\frac{dx}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2} - \frac{1}{2}\int\frac{x dx}{x^2 + 1}\]
\[\text{Putting }x^2 + 1 = t\]
\[ \Rightarrow 2x dx = dt\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2} - \frac{1}{4}\int\frac{dt}{t}\]
\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{2 \left( x + 1 \right)} - \frac{1}{4} \log \left| t \right| + C'\]
\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{2 \left( x + 1 \right)} - \frac{1}{4} \log \left| x^2 + 1 \right| + C'\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int \left( e^x + 1 \right)^2 e^x dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`