मराठी

∫ Sin 5 X Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
बेरीज

उत्तर

\[\int\frac{\sin^5 x}{\cos^4 x}  \text{  dx  }\]
\[ = \int\left( \frac{\sin^4 x . \sin x}{\cos^4 x} \right)\text{ dx }\]
\[ = \int\frac{\left( \sin^2 x \right)^2 . \sin x}{\cos^4 x}\text{ dx }\]
\[ = \int \frac{\left( 1 - \cos^2 x \right)^2 \sin x}{\cos^4 x} \text{ dx }\]
\[ = \int \left( \frac{1 + \cos^4 x - 2 \cos^2 x}{\cos^4 x} \right)\text{ sin x dx }\]
\[ = \int \left( \frac{1}{\cos^4 x} + 1 - \frac{2}{\cos^2 x} \right)\text{  sin    x   dx }\]
\[Let \text{ cos x  }= t\]
\[ \Rightarrow - \text{ sin x } = \frac{dt}{dx}\]
\[ \Rightarrow \text{         sin     x   dx    } = - dt\]
\[Now, \int \left( \frac{1}{\cos^4 x} + 1 - \frac{2}{\cos^2 x} \right)\text{         sin     x   dx    }  \]
\[ = - \int \left( t^{- 4} + 1 - 2 t^{- 2} \right)dt\]
\[ = - \left[ \frac{t^{- 4 + 1}}{- 4 + 1} + t - \frac{2 t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = - \left[ - \frac{1}{3 t^3} + t + \frac{2}{t} \right] + C\]
\[ = \frac{1}{3 t^3} - t - \frac{2}{t} + C\]
\[ = \frac{1}{3 \cos^3 x} - \cos x - \frac{2}{\cos x} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 72 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  sec^6   x  tan    x   dx `

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^4 x\ dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int x \sec^2 2x\ dx\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×