English

∫ Sin 5 X Cos 4 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
Sum

Solution

\[\int\frac{\sin^5 x}{\cos^4 x}  \text{  dx  }\]
\[ = \int\left( \frac{\sin^4 x . \sin x}{\cos^4 x} \right)\text{ dx }\]
\[ = \int\frac{\left( \sin^2 x \right)^2 . \sin x}{\cos^4 x}\text{ dx }\]
\[ = \int \frac{\left( 1 - \cos^2 x \right)^2 \sin x}{\cos^4 x} \text{ dx }\]
\[ = \int \left( \frac{1 + \cos^4 x - 2 \cos^2 x}{\cos^4 x} \right)\text{ sin x dx }\]
\[ = \int \left( \frac{1}{\cos^4 x} + 1 - \frac{2}{\cos^2 x} \right)\text{  sin    x   dx }\]
\[Let \text{ cos x  }= t\]
\[ \Rightarrow - \text{ sin x } = \frac{dt}{dx}\]
\[ \Rightarrow \text{         sin     x   dx    } = - dt\]
\[Now, \int \left( \frac{1}{\cos^4 x} + 1 - \frac{2}{\cos^2 x} \right)\text{         sin     x   dx    }  \]
\[ = - \int \left( t^{- 4} + 1 - 2 t^{- 2} \right)dt\]
\[ = - \left[ \frac{t^{- 4 + 1}}{- 4 + 1} + t - \frac{2 t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = - \left[ - \frac{1}{3 t^3} + t + \frac{2}{t} \right] + C\]
\[ = \frac{1}{3 t^3} - t - \frac{2}{t} + C\]
\[ = \frac{1}{3 \cos^3 x} - \cos x - \frac{2}{\cos x} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 72 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×