English

∫ √ 1 − X X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]

Sum

Solution

\[\text{ Let  I } = \int\frac{\sqrt{1 - x}}{\sqrt{x}}dx\]
\[ = \int\left( \frac{\sqrt{1 - x} \cdot \sqrt{1 - x}}{\sqrt{x} \cdot \sqrt{1 - x}} \right) dx\]
\[ = \int\frac{\left( 1 - x \right)}{\sqrt{x - x^2}}dx\]
\[\text{ Let} \left( 1 - x \right) = A\frac{d}{dx}\left( x - x^2 \right) + B\]
\[ \Rightarrow 1 - x = A \left( 1 - 2x \right) + B\]
\[ \Rightarrow 1 - x = - \left( 2A \right) x + A + B\]
\[\text{Equating coefficients of like terms}\]
\[ - 2A = - 1\]
\[ \Rightarrow A = \frac{1}{2}\]
\[\text{ and   A + B = 1 }\]
\[ \Rightarrow \frac{1}{2} + B = 1\]
\[ \therefore B = \frac{1}{2}\]
\[ \therefore I = \int\frac{\frac{1}{2} \left( 1 - 2x \right) + \frac{1}{2}}{\sqrt{x - x^2}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 1 - 2x \right)}{\sqrt{x - x^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{x - x^2 + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 1 - 2x \right)}{\sqrt{x - x^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x^2 - x + \frac{1}{2^2} \right)}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 1 - 2x \right)}{\sqrt{x - x^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}dx\]

 

 

\[\text{ Putting x - x}^2 =\text{  t in the first integral }\]

\[ \Rightarrow \left( 1 - 2x \right)\text{  dx } = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{1}{\sqrt{t}}dt + \frac{1}{2}\int\frac{1}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]

\[ = \frac{1}{2} \times 2\text{  t}^\frac{1}{2} + \frac{1}{2} \times \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) + C................ \left[ \because \int\frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{- 1} \frac{x}{a} + C \right]\]

\[ = \sqrt{t} + \frac{1}{2} \text{ sin}^{- 1} \left( 2x - 1 \right) + C\]

\[ = \sqrt{x - x^2} + \frac{1}{2} \text{ sin}^{- 1} \left( 2x - 1 \right) + C ..................\left[ \because t = x - x^2 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 54 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int x \cos x\ dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int \cos^5 x\ dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×