English

∫ 1 ( X + 1 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int \frac{dx}{\left( x + 1 \right) \sqrt{x^2 + x + 1}}\]
\[\text{ Putting  x }+ 1 = \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int \frac{- \frac{1}{t^2}dt}{\frac{1}{t}\sqrt{\left( \frac{1}{t}, - , 1 \right)^2 + - 1 + 1\frac{1}{t}}}\]
\[ = \int \frac{- \frac{1}{t^2}dt}{\frac{1}{t}\sqrt{\frac{1}{t^2} - + 1 + \frac{2}{t}\frac{1}{t}}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\frac{\sqrt{t^2 + t - 2t + 1}}{t}}\]
\[ = - \int \frac{dt}{\sqrt{t^2 - t + 1}}\]
\[ = - \int\frac{dt}{\sqrt{t^2 - t + \frac{1}{4} - \frac{1}{4} + 1}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = - \text{ log }\left| t - \frac{1}{2} + \sqrt{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = - \text{ log }\left| t - \frac{1}{2} + \sqrt{t^2 - t + 1} \right| + C\]
\[ = - \text{ log }\left| \frac{1}{x + 1} - \frac{1}{2} + \sqrt{\frac{1}{\left( x + 1 \right)^2} - \frac{1}{x + 1} + 1} \right| + C\]
\[ = - \text{ log }\left| \frac{1}{x + 1} - \frac{1}{2} + \frac{\sqrt{\left( x + 1 \right)^2 - \left( x + 1 \right) + 1}}{x + 1} \right| + C\]
\[ = - \text{ log }\left| \frac{1}{x + 1} - \frac{1}{2} + \frac{\sqrt{x^2 + x + 1}}{x + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 196]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 9 | Page 196

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫  sec^6   x  tan    x   dx `

` ∫      tan^5    x   dx `


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×