Advertisements
Advertisements
Question
Solution
We have,
\[I = \int\frac{\left( 3x + 5 \right)dx}{x^3 - x^2 - x + 1}\]
\[ = \int\frac{\left( 3x + 5 \right)dx}{x^2 \left( x - 1 \right) - 1\left( x - 1 \right)}\]
\[ = \int\frac{\left( 3x + 5 \right)dx}{\left( x^2 - 1 \right) \left( x - 1 \right)}\]
\[ = \int\frac{\left( 3x + 5 \right)dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x - 1 \right)}\]
\[ = \int\frac{\left( 3x + 5 \right)dx}{\left( x - 1 \right)^2 \left( x + 1 \right)}\]
\[\text{Let }\frac{3x + 5}{\left( x - 1 \right)^2 \left( x + 1 \right)} = \frac{A}{x + 1} + \frac{B}{x - 1} + \frac{C}{\left( x - 1 \right)^2}\]
\[ \Rightarrow \frac{3x + 5}{\left( x - 1 \right)^2 \left( x + 1 \right)} = \frac{A \left( x - 1 \right)^2 + B\left( x + 1 \right) \left( x - 1 \right) + C\left( x + 1 \right)}{\left( x + 1 \right) \left( x - 1 \right)^2}\]
\[ \Rightarrow 3x + 5 = A\left( x^2 - 2x + 1 \right) + B\left( x^2 - 1 \right) + Cx + C\]
\[ \Rightarrow 3x + 5 = \left( A + B \right) x^2 + \left( - 2A + C \right)x + \left( A - B + C \right)\]
\[\text{Equating coefficient of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[ - 2A + C = 3 . . . . . \left( 2 \right)\]
\[A - B + C = 5 . . . . . \left( 3 \right)\]
\[\text{Solving these three equations, we get}\]
\[A = \frac{1}{2}\]
\[B = - \frac{1}{2}\]
\[C = 4\]
\[ \therefore \frac{3x + 5}{\left( x - 1 \right)^2 \left( x + 1 \right)} = \frac{1}{2\left( x + 1 \right)} - \frac{1}{2\left( x - 1 \right)} + \frac{4}{\left( x - 1 \right)^2}\]
\[ \Rightarrow I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{dx}{x - 1} + 4\int \left( x - 1 \right)^{- 2} dx\]
\[ = \frac{1}{2}\log \left| x + 1 \right| - \frac{1}{2}\log \left| x - 1 \right| - \frac{4}{\left( x - 1 \right)} + C'\]
\[ = \frac{1}{2}\log \left| \frac{x + 1}{x - 1} \right| - \frac{4}{x - 1} + C'\]
APPEARS IN
RELATED QUESTIONS
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{2 + \cos x} \text{ dx }\]