English

∫ 3 X + 5 X 3 − X 2 − X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
Sum

Solution

We have,

\[I = \int\frac{\left( 3x + 5 \right)dx}{x^3 - x^2 - x + 1}\]

\[ = \int\frac{\left( 3x + 5 \right)dx}{x^2 \left( x - 1 \right) - 1\left( x - 1 \right)}\]

\[ = \int\frac{\left( 3x + 5 \right)dx}{\left( x^2 - 1 \right) \left( x - 1 \right)}\]

\[ = \int\frac{\left( 3x + 5 \right)dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x - 1 \right)}\]

\[ = \int\frac{\left( 3x + 5 \right)dx}{\left( x - 1 \right)^2 \left( x + 1 \right)}\]

\[\text{Let }\frac{3x + 5}{\left( x - 1 \right)^2 \left( x + 1 \right)} = \frac{A}{x + 1} + \frac{B}{x - 1} + \frac{C}{\left( x - 1 \right)^2}\]

\[ \Rightarrow \frac{3x + 5}{\left( x - 1 \right)^2 \left( x + 1 \right)} = \frac{A \left( x - 1 \right)^2 + B\left( x + 1 \right) \left( x - 1 \right) + C\left( x + 1 \right)}{\left( x + 1 \right) \left( x - 1 \right)^2}\]

\[ \Rightarrow 3x + 5 = A\left( x^2 - 2x + 1 \right) + B\left( x^2 - 1 \right) + Cx + C\]

\[ \Rightarrow 3x + 5 = \left( A + B \right) x^2 + \left( - 2A + C \right)x + \left( A - B + C \right)\]

\[\text{Equating coefficient of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[ - 2A + C = 3 . . . . . \left( 2 \right)\]

\[A - B + C = 5 . . . . . \left( 3 \right)\]

\[\text{Solving these three equations, we get}\]

\[A = \frac{1}{2}\]

\[B = - \frac{1}{2}\]

\[C = 4\]

\[ \therefore \frac{3x + 5}{\left( x - 1 \right)^2 \left( x + 1 \right)} = \frac{1}{2\left( x + 1 \right)} - \frac{1}{2\left( x - 1 \right)} + \frac{4}{\left( x - 1 \right)^2}\]

\[ \Rightarrow I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{dx}{x - 1} + 4\int \left( x - 1 \right)^{- 2} dx\]

\[ = \frac{1}{2}\log \left| x + 1 \right| - \frac{1}{2}\log \left| x - 1 \right| - \frac{4}{\left( x - 1 \right)} + C'\]

\[ = \frac{1}{2}\log \left| \frac{x + 1}{x - 1} \right| - \frac{4}{x - 1} + C'\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 43 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x \cos x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×