Advertisements
Advertisements
Question
\[\int \tan^5 x\ \sec^3 x\ dx\]
Sum
Solution
\[\text{ Let I} = \int \tan^5 x \cdot \sec^3 x\ dx\]
\[ = \int \tan^4 x \cdot \sec^2 x \cdot \sec x \tan x\ dx\]
\[ = \int \left( \sec^2 x - 1 \right)^2 \cdot \sec^2 x \cdot \sec x \tan x\ dx\]
\[\text{ Putting sec x} = t\]
\[ \Rightarrow \text{ sec x tan x dx = dt}\]
\[ \therefore I = \int \left( t^2 - 1 \right)^2 \cdot t^2 \cdot dt\]
\[ = \int\left( t^4 - 2 t^2 + 1 \right) t^2 dt\]
\[ = \int\left( t^6 - 2 t^4 + t^2 \right) dt\]
\[ = \frac{t^7}{7} - \frac{2 t^5}{5} + \frac{t^3}{3} + C\]
\[ = \frac{1}{7} \sec^7 x - \frac{2}{5} \sec^5 x + \frac{1}{3} \sec^3 x + C................. \left[ \because t = \sec x \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
` ∫ tan^3 x sec^2 x dx `
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]