Advertisements
Advertisements
Question
\[\int x^2 \cos 2x\ \text{ dx }\]
Sum
Solution
\[\int x^2 \text{ cos 2x dx }\]
` " Taking x"^2 " as the first function and cos 2x as the second function" .`
\[ = x^2 \int\text{ cos 2x dx } - \int\left( 2x\int\text{ cos 2x dx }\right)dx\]
\[ = \frac{x^2 \sin 2x}{2} - \int\frac{2x \sin 2x}{2}dx\]
\[ = \frac{x^2}{2}\sin 2x - \int x \text{ sin 2x dx }\]
\[ = \frac{x^2}{2}\sin 2x - \left[ x\int\sin2x - \int\left( \int\text{ sin 2x dx }\right)dx \right]\]
\[ = \frac{x^2}{2}\sin 2x - \left[ \frac{- x \cos 2x}{2} + \int\frac{\cos 2x}{2}dx \right]\]
\[ = \frac{x^2}{2}\sin 2x + \frac{x \cos 2x}{2} - \frac{\sin 2x}{4} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int \sin^7 x \text{ dx }\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int {cosec}^3 x\ dx\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]